
  A =
$ \int\int_A dydx$
 = $ \int_1^{3}(\int_0^{\frac{e^x}{2}} dy)dx$
 = $\frac{e^3-e}{2}$
 $x_G =\frac{1}{A}\int_1^{3}(\int_0^{\frac{e^x}{2}} x dy)dx$
  = $ \frac{1}{A}e^3$
 = $\frac{2e^3}{e^3-e}$
 $y_G =\frac{1}{A}\int_1^{3}(\int_0^{\frac{e^x}{2}} y dy)dx$
  = $ \frac{1}{A}\frac{e^6-e^2}{16$}
 = $\frac{e^3+e^2}{8}$
 

  A =
$ \frac{\pi a^2}{2}$
 $x_G =0$ par raisons de symétrie
 $y_G =\frac{1}{A}\int_{-a}^{a}(\int_0^{\sqrt{a^2-x^2} y dy)dx$
  = $ \frac{1}{A}\frac{2a^3}{3}$
 = $\frac{4a}{3\pi}$